Pengembangan alat sterilisasi mikroorganisme dan pelaksanaan disinfeksi berkala sebagai upaya untuk memutus rantai penularan covid-19

Irham Fadlika1*, Aripriharta2, Irawan Dwi Wahyono3, Muhammad Rizal Andriansyah4, M. Ricko Gunawan5, Eka Mistakim6, Ach. Syahruddin Fakhri7

1Universitas Negeri Malang, Indonesia, email: irham.fadlika.fii@um.ac.id
2Universitas Negeri Malang, Indonesia, email: arripriharta.fii@um.ac.id
3Universitas Negeri Malang, Indonesia, email: irawan.dwi.fii@um.ac.id
4Universitas Negeri Malang, Indonesia, email: m.rizal.andriansyah@um.ac.id
5Universitas Negeri Malang, Indonesia, email: rickogunawan111@gmail.com
6Universitas Negeri Malang, Indonesia, email: ekamistakim15@gmail.com
7Universitas Negeri Malang, Indonesia, email: as241054@gmail.com
8Koresponden penulis

Info Artikel

Diajukan: 05 Mei 2021
Diterima: 24 Sept 2021
Diterbitkan: -

Keywords: sprayer; covid-19; disinfectant; solar power

Kata Kunci: alat penyemprot; covid-19; disinfektan; tenaga surya

Lisensi: cc-by-sa

Abstract

Covid-19 is a malignant virus that has spread throughout the world, including Indonesia. In Indonesia alone, Covid-19 has proliferated to 502 districts and cities in 34 provinces, including Harjopuncak Village, Sumbermajang Wetan District, Malang Regency. Two main issues, community economy problem and inadequacy of health facilities to fight Covid-19, are addressed and mitigated in this work. We offer some solutions, including the production of a disinfectant spray and a call to carry out sterilization activities in public places together. The realization of this community service program uses the Dignan method which includes five stages. The initial implementation of this activity, which was carried out on October 5, 2020 has gone smoothly with the help of the community, while the tools that have been fully provided to the residents are used to carry out sterilization activities on a regular basis. Six months after the activity, we evaluated the success of this endeavor. There are three indicators of success in this activity, namely a recapitulation of monthly spraying activities from October 2020 - March 2021, the addition of positive cases of Covid-19, and how much knowledge of residents about the importance of spraying disinfectant activities.

Abstrak

PENDAHULUAN

Gambar 1. Peta Persebaran Covid-19 di Kabupaten Malang per April 2021
Sumber: SATGAS Covid-19, KAB. MALANG (malangkab.go.id)

Berdasarkan permasalahan yang telah dipaparkan, terdapat dua solusi yang dilakukan dalam kegiatan pengabdian ini. Pertama, melakukan pembuatan dan pengembangan pada alat semprot disinfektan yang ekonomis dan praktis. Terdapat dua buah alat yang diwujudkan dalam aktivitas ini yaitu alat semprot yang dapat menjangkau tempat yang luas dan alat semprot yang dapat menjangkau tempat yang lebih khusus. Alat semprot yang dapat menjangkau tempat lebih luas memiliki kapasitas 1000 liter dan digunakan untuk penyemprotan di jalan umum dan bagian depan dari tempat-tempat umum, sedangkan alat semprot yang menjangkau area lebih khusus memiliki kapasitas 25 liter dan digunakan untuk penyemprotan bagian yang sulit dijangkau seperti bagian dalam masjid, sekolah, perumahan padat dan pasar. Kedua instrumen ini dibuatkan untuk sterilisasi mikroorganisme khususnya Covid-19 demi mewujudkan masyarakat yang sehat dan sadar akan kebersihan lingkungan.

disinfektan secara kolektif ke beberapa tempat yang biasa digunakan untuk berkumpul seperti jalan raya, masjid, sekolah, balai desa, dan pasar.

Bab-bab selanjutnya akan membahas metode kegiatan yang diusulkan beserta tahapannya, analisis dari hasil yang telah dicapai pada saat dan pasca kegiatan pengabdian berdasarkan indikator keberhasilan program, dan kesimpulan dari kegiatan ini.

METODE PELAKSANAAN

![Gambar 2. Diagram Alir Pelaksanaan Program Pengabdian](image)

Dari penjabaran teori Dignan diatas, maka pelaksanaan program pengabdian ini dapat dikembangkan dan disusun menjadi diagram alir yang ditunjukan pada Gambar 2. Berikut penjelasan tahapan-tahapan yang terdapat pada diagram alir:

dilakukan bersama dengan warga desa Harjokuncaran dengan tetap mematuhi protokol kesehatan. Pada tahap kelima yaitu evaluasi. Setelah kegiatan ini berakhir, proses evaluasi akan dilaksanakan dengan pengkajian ulang mengenai keadaan di lingkungan Desa Harjokuncaran untuk mengetahui tingkat keberhasilan program yang dilakukan untuk selanjutnya ditarik kesimpulan.

HASIL DAN PEMBAHASAN

Dengan mengikuti alur dari metode Dignan, maka dilakukan tahapan-tahapan yang dilakukan mulai dari tahap analisis masalah hingga tahap evaluasi. Tahapan-tahapan tersebut dilakukan oleh tim pengabdi yang bekerja sama dengan pihak mitra yaitu warga desa Harjokuncaran guna untuk mengetahui permasalahan yang ada di Desa Harjokuncaran serta menyelesaikan permasalahannya. Berikut ini hasil dan pembahasan dari pelaksanaan program pengabdian di Desa Harjokuncaran.

1. Analisis Masalah (community analysis)

2. Penilaian Target (targeted assessment)

Untuk mengatasi permasalahan yang ada di Desa Harjokuncaran, maka dari hasil analisis permasalahan dapat ditentukan solusi yang relevan sesuai permasalahannya. Mengacu pada metode Dignan pada langkah penilaian target, maka ditentukan solusi berdasarkan permasalahan yang ada. Berikut ini solusi yang diberikan dalam program pengabdian ini: (a) Sosialisasi kegiatan tentang pentingnya menjaga kebersihan sendiri maupun lingkungan secara disiplin; (b) Pembuatan cairan disinfektan; (c) Penyemprotan cairan disinfektan dilingkungan Desa Harjokuncaran; (d) Pengadaan alat penyemprot disinfektan yang menunjang kegiatan penyemprotan secara berkala; (e) Inovasi alat penyemprot disinfektan berupa alat penyemprot bertena surya.

3. Pengembangan Program (program plan and development)

Untuk mewujudkan agar solusi dapat memberikan manfaat yang baik bagi masyarakat. Berikut ini penjabaran dari pengembangan program pengabdian ini untuk mewujudkan solusi yang diberikan:
a. Sosialisasi

Gambar 3. Diskusi tim pengabdian dan warga Desa Harjokuncaran terkait penentuan waktu penyemprotan disinfektan

Hasil dari kegiatan musyawarah bersama warga desa Harjokuncaran diantaranya: (a) Pelaksanaan kegiatan penyemprotan cairan disinfektan dilaksanakan pada tanggal 5 Oktober 2020; (b) Kegiatan penyemprotan cairan disinfektan dilakukan 8 kali setiap bulan atau 2 kali setiap minggu; (c) Alat penyemprot cairan disinfektan bertenaga surya akan dipihakkan ke masyarakat dan digunakan sesuai kebutuhan; (d) Tempat-tempat yang akan dilakukan penyemprotan meliputi jalan dan fasilitas umum diantaranya yaitu jalan raya, masjid, sekolah, balai desa, dan pasar.

b. Pembuatan cairan disinfektan
c. Perancangan alat penyemprot disinfektan
Ada dua perangkat penyemprot yang dibuat dan dikembangkan dalam pengabdian ini yaitu alat penyemprot dengan bahan bakar bensin yang dapat menjangkau sasaran luas, serta alat penyemprot berbasis energi matahari. Untuk alat penyemprot disinfektan yang pertama dengan sasaran area luas dan memiliki daya tampung cairan disinfektan sebanyak 1000 liter dengan mesin penyemprot menggunakan mesin cuci kendaraan dengan bahan bakar bensin tipe NGL 5,5 HP *Complete Power Sprayer Set*. Inovasi dari mesin penyemprot ini terletak pada mesin yang digunakan berasal dari mesin yang awalnya digunakan sebagai penyemprot kendaraan diubah menjadi mesin untuk menyemprot cairan disinfektan. Inovasi alat penyemprot disinfektan dengan jangkauan luas ditampilkan pada Gambar 4.

Gambar 4. Alat Penyemprot NGL 5,5 HP Complete Power Sprayer Set

Sebagai tambahan, inovasi dilakukan dengan melakukan pembuatan penyemprot berbasis energi matahari. Alat ini merupakan sebuah pengembangan dari alat penyemprot yang memanfaatkan sumber energi terbarukan yaitu tenaga surya. Sumber energi alat penyemprot ini memanfaatkan cahaya matahari yang di simpan pada baterai. Rancangan alat penyemprot bertengah surya dapat dilihat pada Gambar 5.

Gambar 5. Rangkaian Alat Penyemprot Bertenaga Surya
Komponen utama dari alat penyemprot disinfektan bertenaga surya yaitu:

1. **Baterai** yang digunakan yaitu baterai jenis *deep cycle* yang memiliki kapasitas 18Ah dengan tegangan 12V. Dengan kapasitas 18Ah alat penyemprot disinfektan bertenaga surya dapat digunakan 1-3 jam pemakaian.

2. **SCC (Solar Charge Controller)** berfungsi untuk pengatur tegangan yang dihasilkan oleh panel surya. SCC yang digunakan memiliki output 12 V 10 A.

3. **Pompa air DC** berfungsi untuk memompa air atau cairan disinfektan yang ada di dalam tangki. Pompa yang digunakan memiliki spesifikasi tegangan 12 V dan arus 2,6 A, tekanan 100 Psi, dan kecepatan penyulaman air 3,6 L/m.

4. **Panel Surya** yang berfungsi untuk mengubah atau mengkonversi energi dari cahaya menjadi energi listrik. Panel Surya yang digunakan ini memiliki kapasitas daya maksimal 20 Wp, tegangan maksimal 17,8V dan arus maksimal 1,13A. Selain itu terdapat pula opsi pengisian dari listrik AC menggunakan adaptor.

d. Pembuatan alat penyemprot disinfektan bertenaga surya

 Berikut proses pembuatan alat penyemprot cairan disinfektan bertenaga surya: (a) Pemotongan besi kerangka. Besi kerangka dari alat ini terbuat dari besi galvanis yang kokoh dan ringan; (b) Pengelasan besi galvanis bertujuan untuk menjadikan kerangka alat yang kokoh; (c) Pengecatan agar untuk melindungi alat dari korosi; (d) Perakitan kerangka dengan komponen pompa air DC, baterai, SCC, panel surya, tangki, tongkat semprot, komponen kelistrikan dan lain-lain; (e) Pengujian alat. Pada proses pengujian alat, alat diuji sampai alat dapat berfungsi dengan baik dan siap untuk diserahkan.

e. Uji coba penyemprot disinfektan bertenaga surya

Untuk melihat tingkat kemampuan alat penyemprot cairan disinfektan bertenaga surya ini, pengujian dengan menggunakan hambatan yang bervariasi dilakukan untuk mengetahui tekanan dan durasi kerja perangkat selama pemakaian.

<table>
<thead>
<tr>
<th>No.</th>
<th>Variabel Resistor (Ω)</th>
<th>Tekangan pompa air (V)</th>
<th>Arus pompa air (l)</th>
<th>Tekanan pompa air (Psi)</th>
<th>Durasi Pemakaian (Jam)</th>
<th>Kualitas tekanan air</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0 k</td>
<td>12,58</td>
<td>2,49</td>
<td>85,1</td>
<td>5,8</td>
<td>Optimal</td>
</tr>
<tr>
<td>2</td>
<td>1 k</td>
<td>11,29</td>
<td>2,21</td>
<td>77,6</td>
<td>6,51</td>
<td>Optimal</td>
</tr>
<tr>
<td>3</td>
<td>2 k</td>
<td>10,1</td>
<td>1,89</td>
<td>68</td>
<td>7,6</td>
<td>Optimal</td>
</tr>
<tr>
<td>4</td>
<td>3 k</td>
<td>8,76</td>
<td>1,6</td>
<td>59,3</td>
<td>9</td>
<td>Kurang Optimal</td>
</tr>
<tr>
<td>5</td>
<td>4 k</td>
<td>7,48</td>
<td>1,37</td>
<td>51,1</td>
<td>10,51</td>
<td>Kurang Optimal</td>
</tr>
<tr>
<td>6</td>
<td>5 k</td>
<td>6,2</td>
<td>1,12</td>
<td>43,1</td>
<td>12,8</td>
<td>Kurang Optimal</td>
</tr>
<tr>
<td>7</td>
<td>6 k</td>
<td>4,97</td>
<td>0,91</td>
<td>34,4</td>
<td>15,8</td>
<td>Tidak Optimal</td>
</tr>
<tr>
<td>8</td>
<td>7 k</td>
<td>3,66</td>
<td>0,59</td>
<td>25,7</td>
<td>24,4</td>
<td>Tidak Optimal</td>
</tr>
<tr>
<td>9</td>
<td>8 k</td>
<td>2,39</td>
<td>0,43</td>
<td>17,1</td>
<td>33,52</td>
<td>Tidak Optimal</td>
</tr>
<tr>
<td>10</td>
<td>9 k</td>
<td>1,17</td>
<td>0,2</td>
<td>8,9</td>
<td>72</td>
<td>Tidak Optimal</td>
</tr>
<tr>
<td>11</td>
<td>10 k</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Tidak Optimal</td>
</tr>
</tbody>
</table>
Dokumentasi kegiatan pembuatan alat penyemprot cairan disinfektan bertenaga surya yang mencakup pemotongan besi galvanis untuk kerangka alat, perakitan komponen, penggabungan komponen dan box alat, dan penyelesaian akhir alat, masing-masing ditampilkan oleh Gambar 6-9. Tabel 1 menampilkan uji coba sederhana perangkat penyemprot disinfektan tenaga surya dengan kondisi panel surya dan baterai dalam kondisi standar (iradiasi matahari normal dan baterai dalam kondisi penuh). Pada kondisi tersebut, beberapa titik uji dilakukan dengan mengatur keluaran pompa menggunakan hambatan variabel (0-10 kΩ), dan diperoleh dalam kondisi pengaturan untuk kecepatan maksimum (0 kΩ), alat dapat bekerja kurang lebih selama durasi pemakaian efektif 5,8 jam. Data ini dapat dijadikan acuan lebih lanjut bagi masyarakat Desa Harjokuncaran untuk bijak menggunakan perangkat ini sesuai kebutuhan tekanan pompa disinfektan yang diperlukan berdasarkan kondisi baterai mapun cuaca yang tidak ideal.
4. Implementasi *(implementation)*

Tahap keempat yaitu Implementasi. Tahap ini merupakan tahap pelaksanaan kegiatan, penentuan waktu kegiatan berdasarkan hasil musyawarah warga Desa Harjokuncaran. Kegiatan pelaksanaan dilaksanakan dalam beberapa langkah yaitu penyerahan alat pada warga Desa Harjokuncaran, persiapan alat, dan kegiatan penyemprotan bersama. Tahap persiapan alat meliputi persiapan mobil pengangkut, persiapan cairan disinfektan, air bersih, alat penyemprot, drum penampung cairan, dan sekaligus melakukan uji coba alat terakhir adalah penentuan sasaran penyemprotan cairan disinfektan.

Gambar 10. Proses penataan dan persiapan alat penyemprot disinfektan pada kendaraan pengangkut

Gambar 11. Pemasangan banner kegiatan pada kendaraan pengangkut alat disinfektan

Gambar 12. Pelaksanaan kegiatan penyemprotan di sepanjang jalan protokol Desa Harjokuncaran

Gambar 13. Pelaksanaan kegiatan sterilisasi pada mushola di Desa Harjokuncaran
5. Evaluasi (evaluation)

Setelah implementasi program telah dilaksanakan, maka tahap terakhir yang dilakukan yaitu evaluasi program. Evaluasi program bertujuan untuk menilai program yang telah dilaksanakan apakah berjalan dengan baik. Ada tiga indikator keberhasilan sebagai evaluasi dari kegiatan pengabdian ini yaitu:

a. Kegiatan Awal Penyemprotan Disinfektan

b. Pengaruh penyemprotan disinfektan terhadap penambahan kasus positif Covid-19

c. Hasil Akhir Kegiatan Pengabdian di Desa Harjokuncaran

Setelah kegiatan awal penyemprotan yang dilakukan pada tanggal 5 Oktober 2020, masyarakat mayotias sudah memahami pentingnya kegiatan penyemprotan. Hal tersebut didukung dengan data kuesioner per akhir bulan Maret 2021 berdasarkan aktivitas warga selama 6 bulan pasca kegiatan pengabdian. Dari 30 warga desa Harjokuncaran, sebanyak 54% menyatakan kegiatan penyemprotan disinfektan ini
sangat penting, 30% mengatakan penting, 13% warga menyatakan netral dan hanya 3% warga menyatakan kegiatan penyemprotan ini kurang penting. Bedasarkan Gambar 17 dapat disimpulkan bahwa 84% warga memahami pentingnya penyemprotan disinfektan ke lingkungan untuk menurunkan potensi penularan virus Covid-19.

KESIMPULAN

UCAPAN TERIMA KASIH

DAFTAR RUJUKAN

<table>
<thead>
<tr>
<th>#</th>
<th>Source Description</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>www.tandfonline.com</td>
<td>1%</td>
</tr>
<tr>
<td>2</td>
<td>Submitted to University of Edinburgh</td>
<td>1%</td>
</tr>
<tr>
<td>3</td>
<td>www.news-medical.net</td>
<td>1%</td>
</tr>
<tr>
<td>4</td>
<td>www.bangkalankab.go.id</td>
<td>1%</td>
</tr>
<tr>
<td>5</td>
<td>ejurnal.ubharajaya.ac.id</td>
<td>1%</td>
</tr>
<tr>
<td>6</td>
<td>journal.ummat.ac.id</td>
<td>1%</td>
</tr>
<tr>
<td>7</td>
<td>circuit.bcit.ca</td>
<td>1%</td>
</tr>
<tr>
<td>8</td>
<td>ejournal2.undip.ac.id</td>
<td>1%</td>
</tr>
<tr>
<td>9</td>
<td>Submitted to Dewan Perwakilan Rakyat</td>
<td>1%</td>
</tr>
<tr>
<td>10</td>
<td>journal.unj.ac.id</td>
<td>1%</td>
</tr>
<tr>
<td>Source</td>
<td>Percentage</td>
<td></td>
</tr>
<tr>
<td>-------------------------------</td>
<td>------------</td>
<td></td>
</tr>
<tr>
<td>www.fkm.ui.ac.id</td>
<td>1%</td>
<td></td>
</tr>
<tr>
<td>Submitted to Universiti Teknologi MARA</td>
<td><1%</td>
<td></td>
</tr>
<tr>
<td>lipi.go.id</td>
<td><1%</td>
<td></td>
</tr>
<tr>
<td>Submitted to Victoria University of Wellington</td>
<td><1%</td>
<td></td>
</tr>
<tr>
<td>eprints.qut.edu.au</td>
<td><1%</td>
<td></td>
</tr>
<tr>
<td>Submitted to University of Wales Swansea</td>
<td><1%</td>
<td></td>
</tr>
<tr>
<td>dinkes.jogjaprov.go.id</td>
<td><1%</td>
<td></td>
</tr>
</tbody>
</table>

Exclude quotes: On
Exclude bibliography: On
Exclude matches: < 20 words