Pemanfaatan pekarangan dan limbah rumah tangga untuk budidaya ikan lele sebagai upaya memenuhi pangan keluarga selama pandemi covid-19

Aprilia Sufi Subiastuti1*, Budi Setiadi Daryono2, Sukirno3
1Universitas Gadjah Mada, Yogyakarta, Indonesia, email: apriliasufi@ugm.ac.id
2Universitas Gadjah Mada, Yogyakarta, Indonesia, email: bsn_daryono@ugm.ac.id
3Universitas Gadjah Mada, Yogyakarta, Indonesia, email: sukirno@ugm.ac.id
*Koresponden penulis

Info Artikel

Diajukan: 2021-06-27
Diterima: 2021-11-01
Diterbitkan: -

Keywords: portable pool; aquaponics; alternative fish feed
Kata Kunci: kolam portabel; aquaponik; pakan alternatif

Lisensi: cc-by-sa
Copyright © 2022 Aprilia Sufi Subiastuti, Budi Setiadi Daryono, Sukirno

Abstract

The Covid-19 pandemic has caused changes in the socio-economic conditions of the Indonesian people. Around 40% of workers or business actors experience a change in income. Indirectly, this affects the community's ability to meet the family's food needs. This community service program aimed to provide education to the community to optimize the use of yard and household waste to meet family food needs through catfish cultivation. The program implementation was divided into three stages, i.e. community training, mentoring, and evaluation. Community training includes training on hydroponic catfish and kale cultivation using pots and training on making catfish feed and probiotic from household waste. Assistance was carried out regularly every week until the catfish can be harvested. An evaluation was carried out at the end of the activity to determine the effectiveness and potential of the technology to be commercialized. The results of this program show that the cultivation of catfish and kale using pots can be used to meet the family's food needs at low prices. The design technology of portable pool from plastic pot also had the potential to be developed as a home industry. Catfish feed from household waste can reduce feed costs in catfish cultivation by up to 20% with an food conversion ratio FCR value of 1.11 and feed efficiency 90%. This catfish feed helps reduce food waste and kitchen waste by up to 100%.

Abstrak

PENDAHULUAN

Pemanfaatan pangan keluarga dengan harga yang murah. Desain teknologi kolam portabel dari pot ini juga berpotensi untuk dikembangkan sebagai industri rumah tangga. Pakan lele dari limbah rumah tangga mampu menekan biaya pakan dalam budidaya lele hingga 20% dengan nilai rasio konversi pakan (FCR) sebesar 1.11 atau efisiensi pakan hingga 90%. Pakan lele ini membantu pengurangan sampah sisa makanan dan sampah dapur hingga 100%.

Cara menetasi artikel:
Bahkan budidaya tanaman maupun hewan di pekarangan rumah ini juga dapat menambah penghasilan keluarga jika diperoleh hasil yang berlebih.

METODE PELAKSANAAN

Tahap ketiga merupakan pelatihan warga tentang teknologi pembuatan pakan lele dan probiotik dari limbah rumah tangga yang dilaksanakan pada 29 Agustus 2020. Pada sosialisasi tahap ketiga ini, masyarakat diberi bantuan berupa 50 kolam portabel dari pot, 2500 ekor benih lele, benih kangkung, dan 10 L pakan alternatif untuk budidaya lele.

Pada bulan Desember 2020, dilakukan pemanenan kangkung dan lele dari kolam portabel. Hasil panen digunakan sebagai evaluasi keberlanjutan program. Pada sesi ini juga dilakukan dengan pendapat dari masyarakat terkait pelaksanaan program dan potensi teknologi yang ditawarkan.

HASIL DAN PEMBAHASAN
1. Teknologi budidaya kangkung dan lele menggunakan pot/kolam portable

Teknologi yang diperkenalkan kepada masyarakat adalah teknologi budidaya lele di dalam kolam portabel. Teknologi ini digunakan untuk memanfaatkan pekarangan rumah untuk budidaya ikan lele dipadukan dengan budidaya tanaman kangkung secara hidroponik dengan harapan dapat meningkatkan nilai ekonomi keluarga. Dalam program ini, ikan lele dipilih sebagai objek budidaya karena memiliki kandungan protein yang tinggi dan memiliki rasa daging yang lezat. Selain itu, budidaya lele memerlukan modal yang relatif kecil, mudah proses pemeliharaannya, tidak
memerlukan lahan khusus, tidak memerlukan air dalam jumlah banyak, dan pertumbuhannya cepat (Su’udi & Wathon, 2018).

Kolam portabel yang digunakan pada teknologi ini terbuat dari pot plastik berukuran 50 L yang dimodifikasi dengan diberi pipa pengatur jumlah air di bagian bawahnya. Pipa tersebut berfungsi untuk menyesuaikan volume air didalam pot dan untuk melakukan pengurusan residu pangan yang mengendap di dasar kolam. Pot tersebut dipilih karena dasarnya (bagian dalam) berbentuk mengerucut sehingga sisa pakan dan kotoran lele dapat mengumpul pada bagian bawah pot dan mudah dibuang (Gambar 1). Menurut Rachmawati et al. (2015) sisa pakan dan sisa metabolisme ikan lele yang mengendap di dasar kolam akan menyebabkan tingginya kadar amoniak dalam air. Semakin tinggi amoniak maka semakin rendah nilai kandungan oksigen dalam air. Kandungan amoniak yang tinggi juga berpotensi menyebabkan kerusakan insang sehingga mengganggu pertumbuhan dan produktivitas lele. Oleh karena itu, perlu dilakukan pengukuran parameter kualitas air dan penggantian air kolam secara berkala.

![Gambar 1. Desain kolam lele portabel dari pot plastik](image)

Selain digunakan untuk budidaya lele kolam portabel juga digunakan untuk penanaman tanaman sayur (kangkung) secara hidroponik sehingga mengoptimalkan fungsi kolam portabel dari pot (Gambar 2). Tanaman kangkung dipilih karena batang utama kangkung dapat selalu menumbuhkan daun secara terus menerus setelah dipanen. Keberadaan tanaman kangkung di permukaan kolam sekaligus dapat mempertahankan suhu kolam agar tidak terlalu panas karena adanya naungan serta meminimalisir masuknya kontaminan ke dalam air (Rosalina, 2014).
Pada kegiatan pengabdian masyarakat ini, digunakan 100 pot/kolam portabel. Di awal kegiatan, setiap pot dilisi dengan 40 L air, 15-20 ekor benih lele, dan 5-7 tanaman kangkung (seedling). Estimasi waktu budidaya lele dari pemberian hingga panen kurang lebih 2-3 bulan tergantung ukuran lele yang dikehendaki ketika panen. Pasar biasanya lebih menyukai lele yang berukuran tidak terlalu besar sehingga rasa dagingnya tidak terlalu amis. Dari segi biaya, teknologi budidaya ini memerlukan biaya kurang lebih Rp 100.000,- dengan 75% merupakan belanja modal pot dan sisanya biaya benih lele dan kangkung. Pada kegiatan ini, masyarakat setempat telah diberi bantuan berupa 100 kolam portabel sehingga tidak memerlukan mahal untuk keberlanjutan program ini. Teknologi ini dinilai cukup berhasil sebagai strategi pemenuhan pangan keluarga. Hal ini didasarkan pada hasil panen yang dilakukan pada awal Desember 2020 yang mana tiap kolam dapat menghasilkan 2-3 kg ikan lele atau sekitar 15 ekor lele dewasa, dan 4-6 tanaman kangkung.

Gambar 2. Pemanenan hasil budidaya lele dan tanaman kangkung hidroponik menggunakan kolam portabel dari pot plastik

2. Teknologi pembuatan pakan lele alternatif dan probiotik dengan memanfaatkan limbah rumah tangga

Proses pembuatan pakan lele alternatif diawali dengan mengumpulkan sampah sisa makanan dan sampah dapur di suatu ember tertutup. Sampah ditambah nasi katul/tepung ikan dengan rasio 2:1 untuk kemudian difermentasi dengan menambahkan EM4 dengan rasio 1 sendok makan (sdm) EM4 untuk 1 ember sampah organik ukuran 15 L. Setelah 5 hari, hasil fermentasi dipan setemudian dicetak menjadi bentuk pelet menggunakan saringan (Gambar 3). Menurut Dewi & Rahapari (2017) pakan merupakan faktor penentu dalam budidaya ikan lele. Biaya
pembelian pakan mencapai 80% biaya operasional budidaya ikan lele. Pelet pakan alternatif ini kemudian dijemur hingga kering. Keunggulan dari pakan alternatif ini adalah dapat mengurangi biaya pemeliharaan lele karena dapat mengurangi biaya pembelian pakan hingga 20%. Selain itu, teknologi ini membantu mengurangi jumlah sampah sisa makanan dan atau sampah dapur hingga nol (zero waste).

Gambar 3. Pelatihan pembuatan pakan lele alternatif dari limbah rumah tangga

Selain memperoleh pelatihan pembuatan pakan lele alternatif, masyarakat juga diberi pelatihan pembuatan probiotik untuk ikan lele (gambar 4). Probiotik didefinisikan sebagai mikroba hidup yang berfungsi sebagai pangan aditif dan memiliki efek menguntungkan bagi organisme inang. Penambahan probiotik dalam diet akan memodifikasi komunitas mikroba saluran cerna, meningkatkan efisiensi penggunaan dan penyerapan nilai gizi pakan, serta meningkatkan respon ketahanan inang terhadap penyakit (Verschuere et al., 2000). Probiotik dalam akuakultur dapat dianggap sebagai komponen hidup atau mati sel mikroba yang berikan secara langsung atau melalui pakan ke dalam air pemeliharaan yang memberikan dampak menguntungkan bagi ikan yang dibudidayakan melalui penyelimbangan komunitas mikroba di lingkungan (Merrifield et al., 2010).

bobot daging ikan lele hingga 900 gram. Dilihat dari nilai efisiensi pakan (1/FCR) maka penggunaan pakan alternatif dan probiotik mencapai 90%. Hal ini sesuai dengan penelitian Faqih dan Arifin (2017) bahwa penggunaan pakan alternatif dan probiotik dalam budidaya lele dapat menghasilkan nilai FCR hingga 1,26 dan nilai efisiensi pakan hingga 80%.

Gambar 4. Pelatihan pembuatan probiotik untuk budidaya ikan lele

Penggunaan probiotik pada budidaya ikan telah banyak dilakukan bahkan telah masuk ke dalam manajemen budidaya ikan (Dewi & Tahapari, 2017). Pada budidaya ikan lele mutiara, penambahan probiotik dengan dosis 15 ml/kg pakan diketahui mampu meningkatkan pertumbuhan panjang mutlak, kelangsungan hidup ikan, nilai FCR, dan pertumbuhan bobot harian atau specific growth rate (SGR) (Apriani & Putri, 2021). Menurut Yullaningrum et al. (2015) penambahan probiotik meningkatkan pertumbuhan spesifik sebesar 8,023, tingkat kelangsungan hidup hingga 92,62%, efisiensi pakan sebesar 117,22%, serta nilai FCR hingga 85%. Hasil serupa juga dilaporkan oleh Dewi & Tahapari (2017) bahwa penambahan probiotik komersial terbukti retensi karbohidrat, protein, dan lemak berturut-turut sebesar 10,26%, 1,02%, dan 22%. Penggunaan probiotik juga dapat menekan biaya hingga Rp 561,00/kg dan meningkatkan keuntungan sebesar 5%.

Hasil dari program pengabdian masyarakat ini diharapkan dapat meningkatkan inovasi warga dalam memanfaatkan pekarangan rumah untuk memenuhi kebutuhan pangan sehari-hari. Selain itu juga mampu meningkatkan keterampilan warga dalam pengolahan limbah rumah tangga menjadi produk yang bernilai ekonomi.

KESIMPULAN

Teknologi budidaya ikan lele menggunakan pot portabel dan pembuatan pakan alternatif dari limbah rumah tangga telah dapat memberikan keterampilan pada masyarakat Dusun Gejayan untuk memenuhi kebutuhan pangan keluarga. Penggunaan pot portabel membuat masyarakat dapat membudidayakan ikan lele secara cepat dalam skala rumah tangga. Penggunaan pakan alternatif dari limbah rumah tangga dalam budidaya ikan
lele berhasil menekan biaya pakan hingga 20% dan memperoleh hasil panen hingga 15 ekor lele berukuran sedang. Masyarakat juga memiliki kemampuan mengolah limbah rumah tangga menjadi pakan alternatif dan probiotik yang berpotensi dikembangkan sebagai industri rumah tangga (IRT). Program ini perlu dilanjutkan dengan pendampingan kepada masyarakat untuk mengembangkan kelompok industri rumah tangga yang menjual pot portabel, pakan alternatif dari limbah rumah tangga, dan atau probiotik untuk budidaya lele.

UCAPAN TERIMA KASIH

DAFTAR RUJUKAN

#11323

ORIGINALITY REPORT

<table>
<thead>
<tr>
<th>Source</th>
<th>Similarity Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>pse.litbang.pertanian.go.id</td>
<td>7%</td>
</tr>
<tr>
<td>biologi.ugm.ac.id</td>
<td>1%</td>
</tr>
<tr>
<td>ejournal-balitbang.kkp.go.id</td>
<td>1%</td>
</tr>
</tbody>
</table>

PRIMARY SOURCES

- **pse.litbang.pertanian.go.id**
 - Internet Source
 - Similarity Index: 7%

- **biologi.ugm.ac.id**
 - Internet Source
 - Similarity Index: 1%

- **ejournal-balitbang.kkp.go.id**
 - Internet Source
 - Similarity Index: 1%

Exclude quotes: On
Exclude bibliography: On
Exclude matches: < 20 words